618 research outputs found

    The companion object to HD114762

    Get PDF
    We obtained 28 independent radial velocity measurements on the star HD114762, and are now able to derive orbit solution. We confirm the existence of a companion object in an orbit with a semimajor axis about 0.4 au. The new orbit solution is discussed. The result show that the companion is not a planet, but instead is a brown dwarf or a low mass star in a system viewed nearly pole-on

    Radial velocity detection of extra-solar planetary systems

    Get PDF
    The goal of this program was to detect planetary systems in orbit around other stars through the ultra high precision measurement of the orbital motion of the star around the star-planet barycenter. The survey of 33 nearby solar-type stars is the essential first step in understanding the overall problem of planet formation. The program will accumulate the necessary statistics to determine the frequency of planet formation as a function of stellar mass, age, and composition

    On the Nature of the Radial Velocity Variability of Aldebaran: A Search for Spectral Line Bisector Variations

    Get PDF
    The shape of the Ti I 6303.8 A spectral line of Aldebaran as measured by the line bisector was investigated using high signal-to-noise, high resolution data. The goal of this study was to understand the nature of the 643-day period in the radial velocity for this star reported by Hatzes and Cochran. Variations in the line bisector with the radial velocity period would provide strong evidence in support of rotational modulation or stellar pulsations as the cause of the 643-day period. A lack of any bisector variability at this period would support the planet hypothesis. Variations in the line asymmetries are found with a period of 49.93 days. These variations are uncorrelated with 643-day period found previously in the radial velocity measurements. It is demonstrated that this 50-day period is consistent with an m=4 nonradial sectoral g-mode oscillation. The lack of spectral variability with the radial velocity period of 643 days may provide strong evidence in support of the hypothesis that this variability stems from the reflex motion of the central star due to a planetary companion having a mass of 11 Jupiter masses. However, this long-period variability may still be due to a low order (m=2) pulsation mode since these would cause bisector variations less than the error measurement.Comment: LaTeX, 8 pages, 10 figures. Accepted in Monthly Notices of the Royal Astronomical Societ

    Physical observations of comets: Their composition, origin and evolution

    Get PDF
    Observations of Comet P/Schwassmann-Wachmann 1 (SW1) during one observing run each in 1989 and 1990 are discussed, and the new significant information that was obtained is presented. Also discussed are near-UV observations of comets. The near-UV is a mostly unexplored spectral region for comets since it is not visible to spacecraft such as IUE and most ground-based detectors and spectrographs are not sensitive in the near-UV

    Physical observations of comets: Their composition, origin and evolution

    Get PDF
    The composition, origins, and evolution of comets were studied. The composition was studied using spectroscopic observations of primarily brighter comets at moderate and high resolution for the distribution of certain gases in the coma. The origins was addressed through an imaging search for the Kuiper belt of comets. The evolution was addressed by searching for a link between comets and asteroids using an imaging approach to search for an OH coma

    Observations of O (1S) and O (1D) in Spectra of C/1999 S4 (LINEAR)

    Get PDF
    We report on high spectral resolution observations of comet C/1999 S4 (LINEAR) obtained at McDonald Observatory in June and July 2000. We report unequivocal detections of the O (1S) and O (1D) metastable lines in emission in the cometary spectrum. These lines are well separated from any telluric or cometary emission features. We have derived the ratio of the two red doublet lines and show they are consistent with the predictions of the branching ratio. We also derived a ratio of 0.06+/-0.01 for the green line flux to the sum of the red line fluxes. This ratio is consistent with H2O as the dominant parent for atomic oxygen. We have measured the widths of the lines and show that the widths imply that there must be some parent of atomic oxygen in addition to the H2O.Comment: 26 pages includes 6 figures and 3 tables; accepted for Icaru
    corecore